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DIVISION ALGEBRA COUNTEREXAMPLES 
OF DEGREE 8 

BY 

LOUIS H. ROWEN* 

ABSTRACT 

An example is given of a non-crossed product of degree 8 and exponent  4. On 
the other  hand, every division algebra of degree 8 (arbitrary exponent) has a 
solvable splitting field; other positive results are also given. 

Introduction 

In the last few years, considerable general information has been determined 

about division algebras of degree 8, in the following order: 

FACT 1. Amitsur [3]. There is a non-crossed product (of exponent 8). 

FACT 2. Rowen [6]. If the exponent is 2, then there is a maximal subfield 

Galois with group Z2 × Z2 × Z2 over the center. 

FACT 3. Tignol [9]. If the exponent is 2, then it is similar to a tensor product 

of 4 quaternion algebras (over the center). 

FACT 4. Amitsur-Rowen-Tignol [5]. Notwithstanding Fact 3, there is an 

example of exponent 2 which is not  a product of quaternion subalgebras. 

The object of this note is to answer negatively a natural question arising from 

these facts: 

QUESTION 1. IS there a non-crossed product of exponent 4? 

The counterexample to Question 1 is an application of [8] to generic abelian 

crossed products [4]. Note that in [4] the roles of K and F are reversed. Some 
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positive results also are given, including a solvable splitting field for every 

division algebra of degree 8. 

§1. General facts 

We recall from [4, lemma 1.2] that for an abelian crossed product R having 

maximal subfield K Galois over center F with Galois group G = 

(o-~} × (o-2} x . ' '  × (~rq) there are elements U = {u,j [1 5- i , j  <- q} and B = {b~ I1 

i _-< q} satisfying the equations for all i, j, k (where N, denotes the norm with 

respect to the automorphism m): 

(1) u , = l  and u0=u,~;  

(2) ~, (ujk)< (uk,)o-~ (u,,) = u,~u~,u,, ; 

(3) N, (N/(u,,)) = 1; 

(4) o-j (b,)bT' = N, (uj,), 

and (3) follows from (4). 
We write R = (K, G, U ,B) ;  as explained in [4, §1], K, G, U, and B determine 

R up to isomorphism. The generic abelian crossed product built from K, G, and 

U satisfying (1)-(3) above is also treated in [4, §2]; we shall denote it as 

(K, G, U). (Recall (K, G, U) is the quotient ring of the skew polynomial ring 
K [ x , , . . . ,  x,] where x,x~ = uiixjx, and x~w = o-~ (w)x, for each w in K, 1 =< i, / ___< q; 

then 

b; =x?, 

K ' =  K ( b ' ~ , . . . ,  b'q). 

Extend G naturally to K '  by the rule o'j(b'i)= b'iN~(uj~); by construction 

(K, G, U ) =  (K', G, U, B'). Also define: F '  is the fixed field of K'  under the 

action of G.) 
With notation as above, if R = (K, G, U, B)  then it follows easily from (4) that 

b'~b/ is fixed by each o'~, and thus is in F'.  So define 

m = b'~bT', 1 <= i < q. 

REMARK 1.1. Suppose {u,,.~ I o' ,r ~ G} is a factor set defined in the usual 

way, i.e., z~ are chosen such that z , ,wz ; '  = o-(w) for all w in K, and u,,~ = z , ,z~z~ 

for all o-, r in G. Then we could define U and B as above by putting 
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u~j = u,~Tu 7.~ for  o- = 0-, r = o-j, 

n . - - 1  

b~ = 1-'I u,j,, for  r~ = 0-~, r = 0"~. 
j=0 

In view of [4, t h e o r e m  1.4], one  has the following result (where R '  is def ined as 

R @ F ' ' ' F @ R  taken  t t imes): 

PROPOSITION 1.2 ( communica t ed  to me by Amitsur) .  Put U '=  {u~'jl 1 <= i, 
j<=q} and B'~-{b~ II<=i<=q}. In the Brauer group of F, [ ( K , G , U , B ) ] ' =  

[(K, G, U', e ')]. 

REMARK 1.3. Suppose  (K, G, U ,B)  has exponen t  t, in the B r a u e r  group,  i.e., 

[(K,G, U , B ) ] '  = 1. Then  by Propos i t ion  1.2 and [4, t h e o r e m  1.4] there  are 

e l ements  a, in K such that  1 = N~(a,)b; and 1 = 0"~(aj)a,a[10"i(a,)-'ulj, 1 <-<_ i, 

j = q. Writ ing (K, G, U)  = (K ' ,  G, U, B ' )  as above  and putt ing b; = 0~,b,, we get 
rv ¢!  t t  - -  t [(K, G, U)]' ~ [ (K ' ,  G, U ,  B")],  where  each u,, = 1 and each b ,  - a,. But  by [4, 

l e m m a  1.5], (K ' ,  G, U", B")  is a tensor  product  of the cyclic a lgebras  (K', o-i, a 3, 

where  each K'~ is the fixed field of K '  under  all 0-i, J #  i. This yields the following 

result, s ta ted to me by Sal tman,  general iz ing the case t = 2 in [5]: 

PROPOSITION 1.4 (Saltman).  I f  G has exponent dividing t (i.e., every element of 
G has order t) and (K, G, U, B)  has exponent dividing t, then (K, G, U) also has 

exponent dividing t. 

PROOF. Cont inuing R e m a r k  1.3, each [K;,0"~,a~=[K;,0"~,a,]'=l (since 

[K'~: F'] divides t);  so [(K, G, U)] '  ~ a tensor  p roduc t  of matr ic  algebras,  which is 

a matr ic  algebra.  Q .E .D .  

§2. The counterexample--a non-crossed product of exponent 4 

T a k e  G = (0-~) × (0"2), where  4 - o -2 - 0-~ - 1 and 2 -  1. Suppose  G acts on the field K. 

Then  we can write K = K~K2, where  0-2 fixes KI  and o"1 fixes K2. Let  Ko be  the 

fixed subfield of K~ under  o-~. W e  examine  (K, G, U, B )  for  sui table U, B. No te  

U = {ul~ = 1, u~2, Uzl = u~,  u22 = 1}, and (2) is superfluous.  Notation aspreceding 

Remark 1.1; define K'~ = K~(a~, a2), for  0 _6- < i =< 2. 

PROPOSITION 2.1. (K, G, U) has a maximal subfield Galois over its center with 
Galois group Z2× Z2× Zz, iff there is some element k in K with b~ E Fk0"~(k ). 

PROOF. ( '(:: ) Recal l ing x 4 = b], we see K = KoK2F' ' '(kx2~). 
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( :ff ) We have eight commut ing  F ' - independen t  e lements  whose squares are 

in F ' ;  taking " leading monomia l s"  we may assume these e lements  are of the 

form klx','x~, 1 = < i =<8, 0 <= i~<3,= 0 <= z2=" < 1, kl ~ K. (This argument  is spelled 

out  in [7, proposi t ion 4.4].) Clearly then i, E {0,2}. We are done  if (i~, i2) = (2,0) 

for  some i. Otherwise  (i~, i2) = (0, 0) or (0, 1) or (2, 1), 1 = i -< 8. For  (i~, i2) = (0, 0) 

we have k~ E KoK2 and thus have at most four  such elements.  We examine  the 

remaining four  elements.  

If one  e lement  has the form klx2tx2 and another  has the form kzx2 then,  taking 

their  product ,  we see kttr~o'2(k2)o'~(b2)x~ has square in F, so we are done  with 

k-~= kltr~o'2(k2)o~(b2). Thus we may assume our  four  e lements  are e i ther  all of 

the form 2 or = = k~x~x2, all of the form k~xz, 1 < i < 4 .  We el iminate the fo rmer  

possibility, the latter being analogous.  So assume k~x~x2 a e commut ing  F ' -  

independent ,  with squares in F. Then  

0 = [k,x~x2, k,x2x2] = (k,o'~o'E(k,)- k,o'~o-:(k,))b~b2, 

implying k~k? l is fixed under  ~ t r2 ;  also klo-2~r2(k,)blb2 = (k~x~x2)2~ F, implying 

(k ~k ~-z)2E F, so k l k :,~E KoK2. It follows that k~k 7~E Ko (since cr~trz does  not fix 

/(2), 1 -<_ i -<_ 4, contrary  to them being F- independen t .  

Thus  (i~, i2) = (2, 0) for  some i, after  all. Q .E .D.  

We now require  a fact about  cyclic field extensions which probably has an easy 

proof ,  but  whose proof  below is quite  roundabout .  (Albert  [1] gives an 

ar i thmetic  proof  in the special case t = 2.) 

LEMMA 2.2. Suppose L is a cyclie extension o f f  (an infinite field) with Galois 
group (or), with o -2  ̀= 1, and let K~ be the fixed subfield with respect to o". For 

x ~ K~, define N~(x) = xo - (x ) . . ,  o-'-t(x) E F. Suppose for some k in K~ the 

following nondegeneracy condition holds: 

(*) For some k in KI, N~(k ) is not a square in K~. 

Then - 1 ~  N~(K~). 

PROOF. Let  b = N~(k). Then  (L, o-, b) is a cyclic algebra and b z is a norm, so 

(L, tr, b) has exponen t  2. In view of the nondegeneracy  condit ion (*), K~(X/b) is a 

field, so by [7, t heorem 3.5], - b ~ N~(KO. Hence  - 1 = ( b ) ( -  b) -I E N~(K). 
Q.E.D.  

PROPOSITION 2.3. Let H be any field with ~. Then, for suitable fields K D F 

containing H, there is some (K, G, U, B )  of exponent 4, such that (K, G, U)  has 

exponent 4 but does not have a maximal  subfield of Galois group Z2 × Z2 × Z2 

over F'. 
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PROOF. We continue the set-up described at the beginning of this section. 

Note that R = (K, G, U, B)  has exponent _--< 4 if the centralizer of K2 in R has 

exponent 2 (or equivalently an involution of first kind), i.e. if 

(s) - bz = ao',(a) for some a in KoK~ (by [1, theorem 1]). 

In this case (K, G, U) has exponent < 4 by Proposition t.4, so by Proposition 2.1 

it is enough to show 

(6) b, ~ Fko-,2(k) for all k in K. 

Of course we also need to satisfy 

(7) o-2(b,)b, r= Nl(U21). 

Given (7) we automatically get (3), and then by Hilbert 's theorem 90 we can find 

b2 in K such that (4) holds; recapitulating, it is enough to find the field K = K,Kz 

with elements u2,, b~, a satisfying (5), (6), and (7). 

Write N ( w )  for wo'~(w). Note if b, = ako-~(k) then 

Nz(b,) = Nz(aN(k  )) = a 2N(N2(k )) = N(aNz (k  )) ~ N(K~). 

Thus we shall show 

(6') N2(b,) ~ N(K,) .  

Now take C = H[tXl,""-,/zs], where Iz~,'" .,/z8 are commuting indeterminates 

over H, and let L be the field of fractions of C; defining o-z(/z,) = ~,÷~, subscripts 

modulo 8, let K~ (resp. F)  be the fixed subfield of L with respect to o-~ (resp. o- 0. 

We have by Lemma 2..2 some element u,2 of K, with N~(u~2)= - 1 .  Write 

K2 = F(~'2) with ~ r2 E F to be determined. Then put b~ = ~'2, and (7) is automatic; 

it remains to check (5) and (6'). 

Writing az = ~'~ and a = a~(a2+ ~'2) for a~ in K0, these conditions respectively 

become 

(5 ') 

(6") 

- ~2 = a,o,(a,)(a20-,(a2)+ az+ (a2+ 0,(a2))~2), 

- a 2 / N ( w )  for all w inK, .  

Now matching components  of 1 and ~r2 in (5') yields two equations: 

(8) 0 = a2gl(a2)+ a2, so a2 = - a2~r,(a2), 

(9) - 1 = alo,(a,)(a2 + o-,(a2)). 
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We can use (8) to define a2, which leaves us to satisfy merely (9) and 

(10) a2o'~(az) ~ wtr](w) for all w in K~. 

Take az=~ and a2 = - 2 + p ,  where p = ~rl~'3~'5~'7-sr2~'4(6~'8. Then o'~(a2) = 

- 2 - p ,  so (9) holds, and (10) becomes 

4 - p2 ~ wo-~(w) for all w in Kj. 

Now the prime factorization of 4 - p2 in C is (2 - p)(2 + p), each factor of which 

is in K,,Cl C. But the degree of 2 - p  in wo-~(w) must be even, so (10) is indeed 

impossible. Q.E.D. 

On the other hand, there are division algebras over H of degree 8, exponent 2, 

whose maximal subfields Galois over the center all have Galois group Z2 x Z2 x 
Z2, cf. [3 theorem 3]. Confronting these two division algebras with [8, theorem 9] 

produces 

Tr~EOREM 2.4. Saltman' s generic division algebra over H of degree 8, expo- 

nent 4 is not a crossed product, for every field H with I. (Thus there are 
non-crossed products of exponent 4 and any degree 8m, for m an integer.) 

03. Positive results 

A more natural attack on the non-crossed product question of exponent 4 may 

have been to construct a degenerate set of u,, according to [4, lemma 1.7]. 

However,  the ensuing conditions are less tractable, in light of the following 

result. 

THEOREM 3.1. Suppose R is a division algebra of degree 4, with involution (*) 

of the second kind, and let F = { a E Z ( R ) I a* = a }. Assume ~ E F. Then R has 
a maximal subfield L Galois over F, with Galois group Z: × Zz × Z2. 

PROOF. Modification of [6]. Note if r E R with r* = r then the coefficients of 

the minimal monic polynomial of r are symmetric; indeed if 

t ~ l  t - - [  t - - I  

r ' + ~ , r ' = O  then r ' + ~ , a * ~ r ' = O * = O  so O--,~__,(~*-a,)r ' ,  
i ~ 0  i = 0  i = 0  

implying each a*~ = a~. 

We claim now that there is an involution (J) of R over F (of second kind) and 

some x J =  x in R - F  such that x2~  F. Indeed, take d'f = d l  of degree 4 and 

reduced trace 0, writing d4+a2d~+a ld ,+ao=O.  Using the notation of [6, 

theorem 4.1] (so that a is the sum of d, and a certain conjugate of dO, we see by 
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the proof of [6, theorem 6.1] that a is symmetric with respect to some involution 

(Jr) over F;  thus a has degree=<4 over F. By the proof of [6, theorem 4.1], 

[F(a  2) : F] < [F(a )  : F], so a 2 has degree -< 2, proving the claim. 

Now there is some y in R such that yxy -~= - x ,  by the Skolem-Noether  

theorem. Then xy ~ = - yJx, so replacing y by y --- y J, we may assume y = -+ yr. 

Now y2x = xy 2, so y2 has degree-< 2 over C. Also y2 is J-symmetric,  so y2 has 

degree < 2 over F. If yZE F(x) then F, x, y generate a (J)-invariant quaternion 

F-subalgebra of R, so we are done. Otherwise Z(R) ,  F(x), and F(y  2) generate 

the desired field F. Q.E.D. 

A nice, positive general result comes from mimicking a proof of Albert [1, ch. 

11]. Recall that a simple ring has index t if it can be written as matrices over a 

division algebra of degree t. 

THEOREM 3.2. If R has index 8, and ~ E R, then there is a splitting field K of R 
with subfield L, such that K is Galois over L of Galois group Z2 × Z2 × Z2, and L is 
Galois over F of Galois group Z2 x Z2. 

PROOF. Let F =  Z(R) .  R @FR has index_-<4 by [2, lemma 5.7], so has a 

splitting field L1L2, where [L~ : F] = 2. Then R @FL1Lz has exponent 2, and thus 

has a splitting field K Galois over L~L2 with Galois group Z2 x Z2 x Z2, by [6, 

theorem 6.2]. Q.E.D. 

COROLLARY 3.3. Every simple algebra of index 8 of characteristic# 2 has a 
splitting field whose Galois group is a 2-group (and thus is solvable). 
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