DIVISION ALGEBRA COUNTEREXAMPLES OF DEGREE 8

BY LOUIS H. ROWEN^{*}

ABSTRACT

An example is given of a non-crossed product of degree 8 and exponent 4. On the other hand, every division algebra of degree 8 (arbitrary exponent) has a solvable splitting field; other positive results are also given.

Introduction

In the last few years, considerable general information has been determined about division algebras of degree 8, in the following order:

FACT 1. Amitsur [3]. There is a non-crossed product (of exponent 8).

FACT 2. Rowen [6]. If the exponent is 2, then there is a maximal subfield Galois with group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ over the center.

FACT 3. Tignol [9]. If the exponent is 2, then it is similar to a tensor product of 4 quaternion algebras (over the center).

FACT 4. Amitsur-Rowen-Tignol [5]. Notwithstanding Fact 3, there is an example of exponent 2 which is *not* a product of quaternion subalgebras.

The object of this note is to answer negatively a natural question arising from these facts:

QUESTION 1. IS there a non-crossed product of exponent 4?

The counterexample to Question 1 is an application of [8] to generic abelian crossed products [4]. Note that in [4] the roles of K and F are reversed. Some

^t The research of the author is supported by the Anshel Pfeffer Chair.

Received June 11, 1979 and in revised form March 14, 1980

52 **L.H. ROWEN** Israel J. Math.

positive results also are given, including a solvable splitting field for every division algebra of degree 8.

§1. General facts

We recall from [4, lemma 1.2] that for an abelian crossed product R having maximal subfield K Galois over center F with Galois group $G =$ $\langle \sigma_1 \rangle \times \langle \sigma_2 \rangle \times \cdots \times \langle \sigma_a \rangle$ there are elements $U = \{u_{ij} \mid 1 \le i, j \le q\}$ and $B = \{b_i \mid 1 \le j \le q\}$ $i \leq q$ satisfying the equations for all i, j, k (where N_i denotes the norm with respect to the automorphism σ_i :

$$
(1) \t u_{ii} = 1 \t and \t u_{ij} = u_{ji};
$$

(2) $\sigma_i(u_{ik})\sigma_i(u_{ki})\sigma_k(u_{ij}) = u_{ik}u_{ki}u_{ij}$;

$$
(3) \t\t N_i(N_j(u_{ij}))=1;
$$

$$
\sigma_j(b_i)b_i^{-1}=N_i(u_{ji}),
$$

and (3) follows from (4).

We write $R = (K, G, U, B)$; as explained in [4, §1], K, G, U, and B determine R up to isomorphism. The generic abelian crossed product built from K , G , and U satisfying (1) - (3) above is also treated in [4, §2]; we shall denote it as (K, G, U) . (Recall (K, G, U) is the quotient ring of the skew polynomial ring $K[x_1, \dots, x_q]$ where $x_ix_i = u_{ii}x_ix_i$ and $x_iw = \sigma_i(w)x_i$ for each w in $K, 1 \leq i, j \leq q$; then

$$
b'_{i} = x_{i}^{n_{i}},
$$

$$
K' = K(b'_{1}, \cdots, b'_{q}).
$$

Extend G naturally to K' by the rule $\sigma_j(b'_i)=b'_iN_i(u_{ji})$; by construction $(K, G, U) = (K', G, U, B')$. Also define: F' is the fixed field of K' under the action of G .)

With notation as above, if $R = (K, G, U, B)$ then it follows easily from (4) that b/b^{-1} is fixed by each σ_{i} , and thus is in F'. So define

$$
\alpha_i = b_i' b_i^{-1}, \qquad 1 \leq i \leq q.
$$

REMARK 1.1. Suppose $\{u_{\alpha,\tau} \mid \sigma, \tau \in G\}$ is a factor set defined in the usual way, i.e., z_{σ} are chosen such that $z_{\sigma}wz_{\sigma}^{-1} = \sigma(w)$ for all w in K, and $u_{\sigma\tau} = z_{\sigma}z_{\tau}z_{\tau\sigma}^{-1}$ for all σ , τ in G. Then we could define U and B as above by putting

$$
u_{ij} = u_{\sigma,\tau} u_{\tau,\sigma}^{-1} \quad \text{for } \sigma = \sigma_i, \quad \tau = \sigma_j,
$$

$$
b_i = \prod_{j=0}^{n_i-1} u_{\tau_{j,\tau}} \quad \text{for } \tau_j = \sigma_i^j, \quad \tau = \sigma_i.
$$

In view of [4, theorem 1.4], one has the following result (where R^t is defined as $R \otimes_{F} \cdots F \otimes R$ taken t times):

PROPOSITION 1.2 (communicated to me by Amitsur). *Put* $U' = \{u_{ij} | 1 \le i$ *,* $j \leq q$ and $B' = \{b_i \mid 1 \leq i \leq q\}$. In the Brauer group of F, $[(K, G, U, B)]' =$ $[(K, G, U', B')]$.

REMARK 1.3. Suppose (K, G, U, B) has exponent t , in the Brauer group, i.e., $[(K, G, U, B)]' = 1$. Then by Proposition 1.2 and [4, theorem 1.4] there are elements a_i in K such that $1 = N_i(a_i)b_i$ and $1 = \sigma_i(a_i)a_ia_i^{-1}\sigma_i(a_i)^{-1}u_{ij}^t$, $1 \leq i$, $j \leq q$. Writing $(K, G, U) = (K', G, U, B')$ as above and putting $b' = \alpha_i b_i$, we get $[(K, G, U)]' \approx [(K', G, U'', B'')]$, where each $u''_{ij} = 1$ and each $b''_i = \alpha'_i$. But by [4, lemma 1.5], (K', G, U'', B'') is a tensor product of the cyclic algebras (K', σ, α') , where each K_i' is the fixed field of K' under all σ_i , $j \neq i$. This yields the following result, stated to me by Saltman, generalizing the case $t = 2$ in [5]:

PROPOSITION 1.4 (Saltman). *If G has exponent dividing t (i.e., every element of G has order t) and (K, G, U, B) has exponent dividing t, then (K, G, U) also has exponent dividing t.*

PROOF. Continuing Remark 1.3, each $[K'_i, \sigma_i, \alpha_i] = [K'_i, \sigma_i, \alpha_i]' = 1$ (since $[K': F']$ divides t); so $[(K, G, U)]' \approx$ a tensor product of matric algebras, which is a matric algebra. Q.E.D.

§2. The counterexample — a non-crossed product of exponent 4

Take $G = \langle \sigma_1 \rangle \times \langle \sigma_2 \rangle$, where $\sigma_1^4 = 1$ and $\sigma_2^2 = 1$. Suppose G acts on the field K. Then we can write $K = K_1 K_2$, where σ_2 fixes K_1 and σ_1 fixes K_2 . Let K_0 be the fixed subfield of K_1 under σ_1^2 . We examine (K, G, U, B) for suitable U, B. Note $U = \{u_{11} = 1, u_{12}, u_{21} = u_{12}^{-1}, u_{22} = 1\}$, and (2) is superfluous. *Notation as preceding Remark* 1.1; define $K'_i = K_i(\alpha_1, \alpha_2)$, for $0 \le i \le 2$.

PROPOSITION 2.1. *(K, G, U) has a maximal subfield Galois over its center with Galois group* $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$, *iff there is some element k in K with* $b_1 \in Fk\sigma_1^2(k)$.

PROOF. (\Leftarrow) Recalling $x_1^4 = b_1'$, we see $K = K_0' K_2' F'(kx_1^2)$.

54 **L.H. ROWEN L.H. ROWEN** Israel J. Math.

 (\Rightarrow) We have eight commuting F'-independent elements whose squares are in F' ; taking "leading monomials" we may assume these elements are of the form $k_i x_1^{i_1} x_2^{i_2}$, $1 \le i \le 8$, $0 \le i_1 \le 3$, $0 \le i_2 \le 1$, $k_i \in K$. (This argument is spelled out in [7, proposition 4.4].) Clearly then $i_1 \in \{0, 2\}$. We are done if $(i_1, i_2) = (2, 0)$ for some *i*. Otherwise $(i_1, i_2) = (0, 0)$ or $(0, 1)$ or $(2, 1)$, $1 \le i \le 8$. For $(i_1, i_2) = (0, 0)$ we have $k_i \in K_0K_2$ and thus have at most four such elements. We examine the remaining four elements.

If one element has the form $k_1x_1^2x_2$ and another has the form k_2x_2 then, taking their product, we see $k_1\sigma_1^2\sigma_2(k_2)\sigma_1^2(b_2)x_1^2$ has square in F, so we are done with $k^{-1} = k_1 \sigma_1^2 \sigma_2(k_2) \sigma_1^2(b_2)$. Thus we may assume our four elements are either all of the form $k_{i}x_{i}^{2}x_{2}$, or all of the form $k_{i}x_{2}$, $1 \leq i \leq 4$. We eliminate the former possibility, the latter being analogous. So assume $k_1x_1x_2$ a e commuting F' independent, with squares in F. Then

$$
0 = [k_1 x_1^2 x_2, k_1 x_1^2 x_2] = (k_1 \sigma_1^2 \sigma_2(k_i) - k_i \sigma_1^2 \sigma_2(k_1)) b_1 b_2,
$$

implying $k_1k_1^{-1}$ is fixed under $\sigma_1^2\sigma_2$; also $k_1\sigma_1^2\sigma_2(k_1)b_1b_2 = (k_1x_1^2x_2)^2 \in F$, implying $(k_1 k_i^{-1})^2 \in F$, so $k_1 k_i^{-1} \in K_0 K_2$. It follows that $k_1 k_i^{-1} \in K_0$ (since $\sigma_1^2 \sigma_2$ does not fix K_2), $1 \le i \le 4$, contrary to them being *F*-independent.

Thus $(i_1, i_2) = (2, 0)$ for some i, after all. Q.E.D.

We now require a fact about cyclic field extensions which probably has an easy proof, but whose proof below is quite roundabout. (Albert [1] gives an arithmetic proof in the special case $t = 2$.)

LEMMA 2.2. *Suppose L is a cyclie extension off (an infinite field) with Galois group* $\langle \sigma \rangle$, *with* $\sigma^{2i} = 1$, *and let* K_i *be the fixed subfield with respect to* σ^i *. For* $x \in K_1$, define $N_1(x) = x\sigma(x) \cdots \sigma^{t-1}(x) \in F$. Suppose for some k in K_1 the *following nondegeneracy condition holds:*

(*) For some k in K_1 , $N_1(k)$ is not a square in K_1 . *Then* $-1 \in N_1(K_1)$.

PROOF. Let $b = N_1(k)$. Then (L, σ, b) is a cyclic algebra and b^2 is a norm, so (L, σ, b) has exponent 2. In view of the nondegeneracy condition (*), $K_1(\sqrt{b})$ is a field, so by [7, theorem 3.5], $-b \in N_1(K_1)$. Hence $-1 = (b)(-b)^{-1} \in N_1(K)$. Q.E.D.

PROPOSITION 2.3. Let H be any field with $\frac{1}{2}$. Then, for suitable fields $K \supset F$ *containing H, there is some* (K, G, U, B) of exponent 4, such that (K, G, U) has *exponent 4 but does not have a maximal subfield of Galois group* $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ *over F'.*

PROOF. We continue the set-up described at the beginning of this section. Note that $R = (K, G, U, B)$ has exponent ≤ 4 if the centralizer of K_2 in R has exponent 2 (or equivalently an involution of first kind), i.e. if

(5)
$$
-b_1 = a\sigma_1(a) \quad \text{for some } a \text{ in } K_0K_2 \quad \text{(by [1, theorem 1])}.
$$

In this case (K, G, U) has exponent ≤ 4 by Proposition 1.4, so by Proposition 2.1 it is enough to show

(6)
$$
b_1 \notin Fk \sigma_1^2(k) \quad \text{for all } k \text{ in } K.
$$

Of course we also need to satisfy

(7)
$$
\sigma_2(b_1)b_1^{-1}=N_1(u_{21}).
$$

Given (7) we automatically get (3), and then by Hilbert's theorem 90 we can find b_2 in K such that (4) holds; recapitulating, it is enough to find the field $K = K_1K_2$ with elements u_{21} , b_1 , a satisfying (5), (6), and (7).

Write $N(w)$ for $w\sigma_1^2(w)$. Note if $b_1 = \alpha k \sigma_1^2(k)$ then

$$
N_2(b_1) = N_2(\alpha N(k)) = \alpha^2 N(N_2(k)) = N(\alpha N_2(k)) \in N(K_1).
$$

Thus we shall show

$$
(6') \t\t N2(b1) \notin N(K1).
$$

Now take $C = H[\mu_1, \cdots, \mu_8]$, where μ_1, \cdots, μ_8 are commuting indeterminates over H, and let L be the field of fractions of C; defining $\sigma_1(\mu_i) = \mu_{i+1}$, subscripts modulo 8, let K_1 (resp. F) be the fixed subfield of L with respect to σ_1^4 (resp. σ_1). We have by Lemma 2.2 some element u_{12} of K_1 with $N_1(u_{12}) = -1$. Write $K_2 = F(\zeta_2)$ with $\zeta_2^2 \in F$ to be determined. Then put $b_1 = \zeta_2$, and (7) is automatic; it remains to check (5) and (6').

Writing $\alpha_2 = \zeta_2^2$ and $a = a_1(a_2 + \zeta_2)$ for a_i in K_0 , these conditions respectively become

(5')
$$
-\zeta_2 = a_1 \sigma_1(a_1) (a_2 \sigma_1(a_2) + \alpha_2 + (a_2 + \sigma_1(a_2)) \zeta_2),
$$

(6")
$$
-\alpha_2 \neq N(w) \quad \text{for all } w \text{ in } K_1.
$$

Now matching components of 1 and ζ_2 in (5') yields two equations:

(8)
$$
0 = a_2 \sigma_1(a_2) + a_2, \text{ so } \alpha_2 = -a_2 \sigma_1(a_2),
$$

(9)
$$
-1 = a_1 \sigma_1(a_1) (a_2 + \sigma_1(a_2)).
$$

We can use (8) to define α_2 , which leaves us to satisfy merely (9) and

(10)
$$
a_2 \sigma_1(a_2) \neq w \sigma_1^2(w) \quad \text{for all } w \text{ in } K_1.
$$

Take $a_1 = \frac{1}{2}$ and $a_2 = -2+p$, where $p = \zeta_1 \zeta_3 \zeta_5 \zeta_7 - \zeta_2 \zeta_4 \zeta_6 \zeta_8$. Then $\sigma_1(a_2) =$ $-2-p$, so (9) holds, and (10) becomes

$$
4-p^2 \neq w\sigma_1^2(w) \qquad \text{for all } w \text{ in } K_1.
$$

Now the prime factorization of $4 - p^2$ in C is $(2 - p)(2 + p)$, each factor of which is in $K_0 \cap C$. But the degree of $2-p$ in $w\sigma_1^2(w)$ must be even, so (10) is indeed impossible. Q.E.D.

On the other hand, there are division algebras over H of degree 8, exponent 2, whose maximal subfields Galois over the center all have Galois group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times$ \mathbb{Z}_2 , cf. [3 theorem 3]. Confronting these two division algebras with [8, theorem 9] produces

THEOREM 2.4. Saltman's generic division algebra over H of degree 8, expo*nent* 4 is not *a* crossed product, for every field H with $\frac{1}{2}$. (Thus there are *non-crossed products of exponent 4 and any degree 8m, for m an integer.)*

03. Positive results

A more natural attack on the non-crossed product question of exponent 4 may have been to construct a degenerate set of u_{ii} , according to [4, lemma 1.7]. However, the ensuing conditions are less tractable, in light of the following result.

THEOREM 3.1. *Suppose R is a division algebra of degree 4, with involution (*) of the second kind, and let* $F = \{ \alpha \in Z(R) \mid \alpha^* = \alpha \}$. Assume $\frac{1}{2} \in F$. Then R has *a maximal subfield L Galois over F, with Galois group* $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

PROOF. Modification of [6]. Note if $r \in R$ with $r^* = r$ then the coefficients of the minimal monic polynomial of r are symmetric; indeed if

$$
r' + \sum_{i=0}^{i-1} \alpha_i r^i = 0 \quad \text{then} \quad r' + \sum_{i=0}^{i-1} \alpha_i^* r^i = 0^* = 0 \quad \text{so} \quad 0 = \sum_{i=0}^{i-1} (\alpha_i^* - \alpha_i) r^i,
$$

implying each $\alpha_i^* = \alpha_i$.

We claim now that there is an involution (J) of R over F (of second kind) and some $x^3 = x$ in $R - F$ such that $x^2 \in F$. Indeed, take $d_1^* = d_1$ of degree 4 and reduced trace 0, writing $d_1^4 + \alpha_2 d_1^2 + \alpha_1 d_1 + \alpha_0 = 0$. Using the notation of [6, theorem 4.1] (so that a is the sum of d_1 and a certain conjugate of d_1), we see by

the proof of $[6,$ theorem 6.1] that a is symmetric with respect to some involution (J) over F; thus a has degree \leq 4 over F. By the proof of [6, theorem 4.1], $[F(a²) : F] < [F(a) : F]$, so $a²$ has degree \leq 2, proving the claim.

Now there is some y in R such that $yxy^{-1} = -x$, by the Skolem-Noether theorem. Then $xy' = -y'x$, so replacing y by $y \pm y'$, we may assume $y = \pm y'$. Now $y^2x = xy^2$, so y^2 has degree \leq 2 over C. Also y^2 is *J*-symmetric, so y^2 has degree ≤ 2 over F. If $y^2 \in F(x)$ then F, x, y generate a (J)-invariant quaternion F-subalgebra of R, so we are done. Otherwise $Z(R)$, $F(x)$, and $F(y^2)$ generate the desired field F . $Q.E.D.$

A nice, positive general result comes from mimicking a proof of Albert [1, ch. 11]. Recall that a simple ring has *index t* if it can be written as matrices over a division algebra of degree t.

THEOREM 3.2. *If R has index 8, and* $\frac{1}{2} \in R$, then there is a splitting field K of R *with subfield L, such that K is Galois over L of Galois group* $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ *, and L is Galois over F of Galois group* $\mathbb{Z}_2 \times \mathbb{Z}_2$.

PROOF. Let $F = Z(R)$. $R \otimes_F R$ has index ≤ 4 by [2, lemma 5.7], so has a splitting field L_1L_2 , where $[L_i : F] = 2$. Then $R \otimes_F L_1L_2$ has exponent 2, and thus has a splitting field K Galois over L_1L_2 with Galois group $\mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_2$, by [6, theorem 6.2]. $Q.E.D.$

COROLLARY 3.3. *Every simple algebra of index 8 of characteristic* \neq 2 has a *splitting field whose Galois group is a 2-group (and thus is solvable).*

REFERENCES

1. A. A. Albert, *A construction of non-cyclic normal division algebras,* Bull. Amer. Math. Soc. 38 (1932), 449-456.

2. A. A. Albert, *Structure of Algebras,* Amer. Math. Soc. Colloq. Publ. 24, Providence, R.I., 1961.

3. S. A. Amitsur, *On central division algebras,* Israel J. Math. 12 (1972), 408--422.

4. S. A. Amitsur and D. Saltman, *Generic abelian crossed products and p-algebras,* J. Algebra 51 (1978), 76-87.

5. S. A. Amitsur, L. H. Rowen and J. P. Tignol, *Division algebras of degree 4 and 8 with involution,* Israel J. Math. 33 (1979), 133-148.

6. L. H. Rowen, *Central simple algebras,* Israel J. Math. 29 (1978), 285-301.

7. L. H. Rowen, *Central simple algebras with involution viewed through centralizers,* J. Algebra 63 (1980), 41-55.

8. D. Saltman, *Indecomposible division algebras,* Comm. Algebra, to appear.

9. J. Tignol, *Sur les classes de similitude de corps a involution de degre* 8, C. R. Acad. Sci. Paris, Ser. A **286** (1978), 875-876.

BAR-ILAN UNIVERSITY

RAMAT GAN, ISRAEL