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DIVISION ALGEBRA COUNTEREXAMPLES
OF DEGREE 8

BY
LOUIS H. ROWEN'

ABSTRACT

An example is given of a non-crossed product of degree 8 and exponent 4. On
the other hand, every division algebra of degree 8 (arbitrary exponent) has a
solvable splitting field; other positive results are also given.

Introduction

In the last few years, considerable general information has been determined
about division algebras of degree 8, in the following order:

Facr 1. Amitsur [3]. There is a non-crossed product (of exponent 8).

Facr 2. Rowen [6]. If the exponent is 2, then there is a maximal subfield
Galois with group Z,x Z,x Z, over the center.

Fact 3. Tignol [9]. If the exponent is 2, then it is similar to a tensor product
of 4 quaternion algebras (over the center).

Fact 4. Amitsur-Rowen-Tignol [5]. Notwithstanding Fact 3, there is an
example of exponent 2 which is not a product of quaternion subalgebras.

The object of this note is to answer negatively a natural question arising from
these facts:

QuestioN 1. Is there a non-crossed product of exponent 4?

The counterexample to Question 1 is an application of [8] to generic abelian
crossed products [4]. Note that in [4] the roles of K and F are reversed. Some
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positive results also are given, including a solvable splitting field for every
division algebra of degree 8.

§1. General facts

We recall from [4, lemma 1.2} that for an abelian crossed product R having
maximal subfield K Galois over center F with Galois group G =
(o) X (o) X + - - X {0,) there are elements U = {u, [ 1=ij=q}and B = {b, | 1=
i = q} satisfying the equations for all i, j, k (where N; denotes the norm with
respect to the automorphism o;):

1) u; =1 and w; = u;;

Q) 0 (i )0y (tia )0 (1) = Upelhiildy 5
3) Ni(N; (uy)) = 1;

@) 0;(b:)b7" = Ni(us),

and (3) follows from (4).

We write R = (K, G, U, B); as explained in [4, §1], K, G, U, and B determine
R up to isomorphism. The generic abelian crossed product built from K, G, and
U satisfying (1)-(3) above is also treated in [4, §2]; we shall denote it as
(K, G, U). (Recall (K, G, U) is the quotient ring of the skew polynomial ring
K[xi,- -, x,] where xx; = w;x;x; and x;w = o:(w)x; foreachw in K, 1=, j = q;
then

n

b’x =~x("a

K'=K(b),---, b))

Extend G naturally to K’ by the rule o;(bj) = biN;(u;); by construction
(K,G,U)=(K',G, U,B’). Also define: F' is the fixed field of K’ under the
action of G.)

With notation as above, if R = (K, G, U, B) then it follows easily from (4) that
b'b:' is fixed by each o), and thus is in F'. So define

a=bb', 1=i=q

RemARK 1.1. Suppose {u,.|o, 7 € G} is a factor set defined in the usual
way, i.e., 2, are chosen such that z,wz.'= o(w) forall w in K, and u., = 252,270

for all o, 7 in G. Then we could define U and B as above by putting



Vol. 38, 1981 DIVISION ALGEBRAS 53

uii = ucr,-ru:,:r for o = 0;, T = 0-1'7

n—1
b = H U form, =0, 7=o0.
=0

In view of [4, theorem 1.4}, one has the following result (where R’ is defined as
R®r 'r@R taken ¢ times):

ProposiTioN 1.2 (communicated to me by Amitsur). Put U’ :{u,f,fléi,
j=q} and B' = {bﬁl 1=i=gq}. In the Brauer group of F, [(K,G,U,B)|' =
(K, G, U, B")].

Remark 1.3. Suppose (K, G, U, B) has exponent ¢, in the Brauer group, i.e.,
[(K, G, U,B)]' = 1. Then by Proposition 1.2 and [4, theorem 1.4] there are
elements a; in K such that 1= N;(a)b} and 1= o;(a))aa;'c;(a) 'uj, 1=i,
j =gq. Writing (K, G, U) = (K’, G, U, B") as above and putting b; = ab;, we get
(K, G, U)) =[(K', G, U", B")], where each ui; = 1 and each b7 = «;. But by [4,
lemma 1.5}, (K’, G, U", B") is a tensor product of the cyclic algebras (K, o5, i),
where each K/ is the fixed field of K’ under all o;, j# i. This yields the following
result, stated to me by Saltman, generalizing the case ¢ =2 in [5]:

ProposiTioN 1.4 (Saltman). If G has exponent dividing t (i.e., every element of
G has order t) and (K, G, U, B) has exponent dividing t, then (K, G, U) also has
exponent dividing t.

Proor. Continuing Remark 1.3, each [K), o, ai]=[K} o, a] =1 (since
[K'i: F') divides t); so [(K, G, U)]' = a tensor product of matric algebras, which is
a matric algebra. Q.E.D.

§2. The counterexample —a non-crossed product of exponent 4

Take G = (a,) X (0,), where o{= 1 and = 1. Suppose G acts on the field K.
Then we can write K = K,K,, where o fixes K, and o, fixes K. Let K, be the
fixed subfield of K, under a?. We examine (K, G, U, B) for suitable U, B. Note
U={un=1, up, s = U, U= 1}, and (2) is superfluous. Notation as preceding
Remark 1.1; define K= K (a,, a,), for 0 =i =2.

ProrosiTioN 2.1. (K, G, U) has a maximal subfield Galois over its center with
Galois group Z,x Z, X Z,, iff there is some element k in K with b, € Fkoi(k).

Proor. (<) Recalling x}= b}, we see K = K{K}F'(kx?).
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(> ) We have eight commuting F'-independent elements whose squares are
in F’; taking “leading monomials” we may assume these elements are of the
form kx i‘x;’, 1=i=8,0=i,=3,0=i,=1, k: € K (This argument is spelled
out in [7, proposition 4.4].) Clearly then i, € {0,2}. We are done if (i,, i-) = (2,0)
for some i. Otherwise (i, i) = (0,0) or (0,1) or 2,1), 1 =i = 8. For (i, i) = (0,0)
we have k; € KyK, and thus have at most four such elements. We examine the
remaining four elements.

If one element has the form k,xix, and another has the form k,x, then, taking
their product, we see k,a30(k;)oi(b,)x has square in F, so we are done with

“'= k,a%0y(ks)o(b;). Thus we may assume our four elements are either all of
the form kix’x,, or all of the form kix,, 1=i=4. We eliminate the former
possibility, the latter being analogous. So assume kixix; a e commuting F'-
independent, with squares in F. Then

0= [k.x?xz, k.—x?xz] = (klo'flfz(ki) - kio-?o-z(kl))blbb

implying k,k ;" is fixed under oio; also kioiou(ki)bib, = (kixix.)’ € F, implying
(k.k;'V € F, s0 kiki'€ KoK. It follows that k,k;' € K, (since oio, does not fix
K,), 1 =i =4, contrary to them being F-independent.
Thus (iy, i>) = (2,0) for some i, after all. QE.D.
We now require a fact about cyclic field extensions which probably has an easy
proof, but whose proof below is quite roundabout. (Albert [1] gives an
arithmetic proof in the special case t = 2.)

LeEMMa 2.2. Suppose L is a cyclic extension of F (an infinite field) with Galois
group {o), with * =1, and let K, be the fixed subfield with respect to o'. For
x € K,, define N\(x)=x0(x) - -0 '(x)EF. Suppose for some k in K, the
following nondegeneracy condition holds:

(%) For some k in K,, N,(k) is not a square in K,.

Then — 1€ N(K)).

Proor. Let b = N,(k). Then (L, o, b) is a cyclic algebra and b” is 2 norm, so
(L, o, b) has exponent 2. In view of the nondegeneracy condition (¥), K,(Vb)isa
field, so by [7, theorem 3.5], — b € N\(K;). Hence —1=(b)(—b)"' € N«(K).

Q.E.D.

ProposiTioN 2.3. Let H be any field with 5. Then, for suitable fields K O F
containing H, there is some (K, G, U, B) of exponent 4, such that (K, G, U) has
exponent 4 but does not have a maximal subfield of Galois group Z,xZ,XxZ,
over F'.
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PROOF. We continue the set-up described at the beginning of this section.
Note that R = (K, G, U, B) has exponent = 4 if the centralizer of K; in R has
exponent 2 (or equivalently an involution of first kind), i.e. if

) - b,=ao(a) for some a in KK, (by [1, theorem 1]).

In this case (K, G, U) has exponent = 4 by Proposition 1.4, so by Proposition 2.1
it is enough to show

(©) b & Fkoi(k)  forall k in K.

Of course we also need to satisfy

(7 ab)by" = Ni(uz).

Given (7) we automatically get (3), and then by Hilbert’s theorem 90 we can find
b, in K such that (4) holds; recapitulating, it is enough to find the field K = K\ K,
with elements u,;, b,, a satisfying (5), (6), and (7).
Write N(w) for woi(w). Note if b, = akai(k) then
Na(b)) = Ny(aN(k)) = a’N(NAk)) = N(aN.(k)) € N(K)).

Thus we shall show

(6" Ny(b))& N(K)).

Now take C = H{u,, - -, us], where u,,---, us are commuting indeterminates
over H, and let L be the field of fractions of C; defining a(u:) = i1, subscripts
modulo 8, let K, (resp. F) be the fixed subfield of L with respect to o (resp. o).
We have by Lemma 2.2 some element u,, of K, with Ny(u;)= —1. Write
K, = F({,) with {3 € F to be determined. Then put b, = {,, and (7) is automatic;
it remains to check (5) and (6).

Writing a; = {3 and a = a.(a,+ {;) for a; in K,, these conditions respectively
become

) — L= a:01(a:)(a:01(a2) + az + (a2 + 01(a2))42),

(6") - a, # N(w) forallw in K,.

Now matching components of 1 and ¢, in (5') yields two equations:
® 0=ao(a)+a, s0 a= —a,oi(a),

() —1=ag{a)(a,+ o:(a)).
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We can use (8) to define a,, which leaves us to satisfy merely (9) and
(10) ao(a) # wai(w)  forallwinK,.

Take a,=3 and a,= —2+p, where p = ({7~ {rlulels. Then o(ay)=
—2-p, so (9) holds, and (10) becomes

4-p*# woi(w)  forallwinK,.

Now the prime factorization of 4 — p*in C is (2 — p)(2 + p), each factor of which
is in K, N C. But the degree of 2— p in woi(w) must be even, so (10) is indeed
impossible. Q.E.D.

On the other hand, there are division algebras over H of degree 8, exponent 2,
whose maximal subfields Galois over the center all have Galois group Z, X Z, X
Z,, cf. 3 theorem 3]. Confronting these two division algebras with [8, theorem 9]
produces

THEOREM 2.4. Saltman’s generic division algebra over H of degree 8, expo-
nent 4 is not a crossed product, for every field H with 3 (Thus there are
non-crossed products of exponent 4 and any degree 8m, for m an integer.)

§3. Positive results

A more natural attack on the non-crossed product question of exponent 4 may
have been to construct a degenerate set of u; according to [4, lemma 1.7].
However, the ensuing conditions are less tractable, in light of the following
result.

THEOREM 3.1. Suppose R is a division algebra of degree 4, with involution (*)
of the second kind, and let F = {a € Z(R), a* = a}. Assume ;E F. Then R has
a maximal subfield L Galois over F, with Galois group Z, X Z, X Z,.

Proor. Modification of [6]. Note if r € R with r* = r then the coefficients of
the minimal monic polynomial of r are symmetric; indeed if

t—1 t—1 =1
r+Y ar=0 then r'+ a%r'=0*=0 so 0= (a*-a)r,
i=0 i=0 i=0

implying each a% = a:.

We claim now that there is an involution (J) of R over F (of second kind) and
some x’ = x in R — F such that x>€ F. Indeed, take df = d, of degree 4 and
reduced trace 0, writing d}+ a.d’+ a,d;+ ao=0. Using the notation of [6,
theorem 4.1] (so that a is the sum of d, and a certain conjugate of d,), we see by
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the proof of [6, theorem 6.1] that a is symmetric with respect to some involution
(J) over F; thus a has degree =4 over F. By the proof of [6, theorem 4.1],
[F(a®): F]<[F(a): F}, so a’ has degree =2, proving the claim.

Now there is some y in R such that yxy ' = —x, by the Skolem-Noether
theorem. Then xy’ = — y’x, so replacing y by y = y’, we may assume y = =y’
Now y?x = xy?, so y* has degree =2 over C. Also y’ is J-symmetric, so y” has
degree =2 over F. If y>€ F(x) then F, x, y generate a (J)-invariant quaternion
F-subalgebra of R, so we are done. Otherwise Z(R), F(x), and F(y?) generate
the desired field F. Q.E.D.

A nice, positive general result comes from mimicking a proof of Albert [1, ch.
11]. Recall that a simple ring has index ¢t if it can be written as matrices over a
division algebra of degree .

THEOREM 3.2. If R hasindex 8, and 3 € R, then there is a splitting field K of R
with subfield L, such that K is Galois over L of Galois group Z, X Z, X Z,, and L is
Galois over F of Galois group Z,X Z,.

Proor. Let F=Z(R). R ®rR has index =4 by [2, lemma 5.7], so has a
splitting field L,L,, where [L; : F] = 2. Then R ®rL,L; has exponent 2, and thus
has a splitting field K Galois over L,L, with Galois group Z, X Z,x Z,, by [6,
theorem 6.2]. Q.E.D.

CoroirLARY 3.3.  Every simple algebra of index 8 of characteristic# 2 has a
splitting field whose Galois group is a 2-group (and thus is solvable).
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